

Support System for Computer Programming Instruction
in Group Education Environment

Masanori NAKAKUNI*, Hiroshi DOZONO+

*Information Technology Center +Faculty of Science and Engineering

Fukuoka University Saga University
8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 1-Honjo Saga 840-8502

JAPAN JAPAN

nak@fukuoka-u.ac.jp, hiro@dna.ec.saga-u.ac.jp

Abstract: - The purpose of this system is to facilitate smooth instruction of computer education in group
education settings used when a teacher and students gather in a single classroom. For example, in a situation
where a single teacher is teaching programming to 50 students, there are cases where learning progress will
vary greatly between students. Students with a sufficient understanding of class content will be able to
complete an accurate program on the spot if presented with a problem during class. However, students who do
not understand the course material will not be able to complete an accurate program, will have to make
repeated revisions to the program, and will require significant time before completion of the program. We have
evaluated the development of and created a prototype that will search for students whose progress is delayed
and notify the instructor. This paper discusses the results of the experimental use of this prototype system and
the future concept for this system.

Key-Words: - C language programming, group education, computer education, support system

1 Introduction
In a group education environment where a teacher
and students gather in a single classroom, a single
instructor or small number of instructors will
provide instruction to a large number of students. In
a lecture course, which involves the one-way
presentation of information by the instructor, it is
not problematic even when there are 100 students or
more. However, in a practical application course
where the instructor must provide direct instruction
to each student, the one-way lecture style of
teaching is not suitable. In other words, in practical
application courses the instructor must progress with
the class while maintaining a constant awareness of
student progress but with such a large number of
students this can be difficult to achieve. However,
there is potential for this problem to be resolved
through training using computers. For example, in a
computer programming course, a common flow
involves presenting a problem to students during
class and having the students create a program.
Students with a sufficient understanding of class
content will be able to complete an accurate
program on the spot if presented with a problem
during class. However, students who do not
understand the course material will not be able to

complete an accurate program, will have to make
repeated revisions to the program, and will require
significant time before completion of the program.
Focusing on this point, we conceived the possibility
for the automated discovery of students whose
progress has fallen behind the rest of the class and
identify that student to the instructor to enable the
instructor to provide immediate support to that
student, which would lead to a reduction in the
number of students unable to keep up with the class.

2 Current problem
Identifying students who have fallen behind in the
learning process can perhaps be achieved by
regularly asking students questions and observing
their responses. For example, asking students who
have not completed their program to raise their
hands may enable the instructor to ascertain student
progress once. However, this method presents a
major problem. The actual process of asking
students to raise hands in order to ascertain progress
could cause delays among students. Frequently
querying students to confirm progress could result
in not only a delay in progress, but also cause some
students to not raise their hand even though they

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 91

have fallen behind, which would in turn make it
difficult to accurately ascertain learning progress
among students. For example, there could be
students so intensely concentrating on program
creation that they do not notice the instructor’s
query. Also, among Japanese students, although in
the minority, there still are introverts who are unable
to express themselves. Such students might be
embarrassed by falling behind the learning pace and
would not raise a hand even if queried by the
instructor. Conversely, among students who have
completed their program, continuously responding
to such queries would become annoying and many
might not respond to queries. Due in part to these
characteristics seen in Japanese students,
ascertaining student learning progress based on a
show of hands is difficult.

If querying students and confirming their
response to ascertain learning progress is difficult,
then it might be possible to confirm the status of
learning for each student by looking at the PC
screens of each student. The educational PCs we use
employ a system called “Wingnet,” which allows
work being done on individual student screens to be
confirmed from the PC at the instructor’s desk [1].
This means that the instructor can confirm the status
of student learning from the instructor desk PC.
Appendix Figure A is the student PC management
screen in the Wingnet system. However, there is a
major problem related to the method of using this
system to confirm the status of student learning. The
process of confirming progress on the monitor of
each student requires a certain amount of time. For
example, in a class with 50 students, we can assume
it would take approximately five seconds to confirm
the monitor of each student. The process of
confirming the monitor of each student in the class
would require 250 seconds, which is more than four
minutes. In a class that lasts 90 minutes, confirming
the monitor of each student alone would consume
4% of total class time. Conducting this confirmation
process another time would mean consuming 8% of
class time. In other words, this process alone would
consume nearly 10% of class time, which would
reduce time for other class activities and overall
make it difficult to progress the class. Furthermore,
this time of five seconds is based on the assumption
that the programs created by student all function
properly. However, any programs with bugs will
require 1-2 minutes per student to provide the
instruction necessary to correct these bugs. There is
sure to be students who will require bug correction
for their programs so more time would be spent on
individual instruction.

From these observations, we proposed a teaching
support system that automatically gathers data on
the student PC operations and conducts an
automated and real-time analysis of this data to
inform the instructor of students who may be falling
behind to enable the instructor to provide immediate
guidance to such students.

3 Prototype and software
development
We developed a simple prototype software for the
purpose of conducting preliminary testing prior to
full-scale student support tests. This software is
referred to as Teaching Support System (TSS). TSS
is software that reads the status of operations
conducted by the student on a PC. TSS is simple
software that has the ability read, gather, and save
data on mouse clicks, key input, and the frequency
with which a specific key was operated during a
specific point in time. Furthermore, we developed
an analysis software (TSS-SOM) using Self-
Organizing MAP (SOM) that is able to analysis the
collected data [2, 3, 4, 5, 6, 7].

4 TSS log collection and analysis
results
The primary purpose of these tests is to collect the
key input information of each student participating
in the practical course and confirm whether or not it
is possible to identify indexes that make it possible
to ascertain student progress. The test was
conducted using the following conditions.

- Each practical course consists of approximately 50
students.
- Test involves collection of data from two classes
(100 students).
- The test subjects are in beginning C programming
language classes (primarily 2nd year university
students).
- Computers used by students PCs running
Windows 7. The students use X terminal software,
which runs on Windows, to login to Linux and
practice C programming language in the Linux
environment.
- TSS is software that runs on Windows but all key
strokes and commands to Linux are conducted
through Windows. As such, key input can be
monitored at the hardware level and Linux operation
logs can be acquired using TSS.
- TSS runs automatically on the PC of each student
from class start to end and reads all key input and

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 92

mouse click information. As such, there is no need
for the student to pay attention to TSS. The system
also automatically records any key input that is
unrelated to coursework. Furthermore, testing and
log analysis was conducted via the following
procedures.

1) The student logs into the Windows PC.
2) X-terminal is launched in Windows and the

student logs into Linux.
3) TSS executed.
4) Teacher and students conduct 90-minute class.
5) Following the conclusion of the class, TSS is

used to collect logs.
6) TSS-SOM used to analyze logs.

The C language program used by the students for
reference during the class is shown in Figure 1.
Using this program as a reference, the students
create their own programs based on requirements
indicated by the teacher and then try to execute the
program. Student key input information is gathered
once per minute and saved to a log file. For a 90
minute class, approximately 90 entries are recorded
to the log file. The log for each entry is equivalent to
records for one minute. This single entry indicates
the number of times input was conducted for each
key (Fig. 2). The log in Figure 2 shows the log for a
single entry. Each number is separated by a comma
and the numeral to the far left shows the time at
which key input information was collected. To the
right is the time at which the left mouse button was
clicked and to the right of that is the time at which
the right mouse button was clicked. The numbers
with the right of that are the times at which input
was conducted for each key. This allows one to
know which keys were input more or less during
that time span.

An analysis of logs using TSS-SOM showed that
we could ascertain the status of progress by each
student. Appendix Figure B shows maps created
using SOM outlined in chronological order. The
numbers on the map are numbers used to identify
each student. The maps show progress immediately
following the start of program creation by students
as well as 1 minute, 2 minutes, 3 minutes, 4
minutes, 10 minutes, and 11 minutes later. The
maps allow one to ascertain which commands are
being input by the students at each point in time.
Program content is arranged in order from the top
and includes C programming language terminology
such as include, main, void, int, and double. From
the map we can see which terms are being input by

each student. When “return” at the end of the
program is input, this status is displayed on the map
to indicate that the student has finished creating the
program.

Fig. 1 Example of C language program

Fig. 2 Example of the key input log

5 Conclusion
For this experiment, we tested to see to what extent
the status of progress for each student can be
confirmed by reading student key input information
and using SOM to analyze that information. The
TSS prototype is simple software that records
student key input and later uses SOM to analyze that
key input. At present, we are unable to gather key
input information and show SOM analysis
information in real time. As such, these functions
must be linked and combined into a single complete
system. This system also requires functions such as
the ability to identify students in need of instruction

20131029144950,9,0,0,・・・,0,0,0,0,0
20131029144955,0,0,0,・・・,0,0,0,0,0
20131029145005,0,0,0,・・・,0,0,0,0,0
20131029145010,0,0,0,・・・,0,0,0,7,0
20131029145015,0,0,0,・・・,0,0,0,0,0
20131029145020,0,0,0,・・・,0,6,0,0,0
20131029145025,0,0,0,・・・,0,0,0,0,0
20131029145030,0,0,0,・・・,0,0,0,3,0
20131029145035,1,0,0,・・・,0,0,0,0,0

・
・
・

#include <stdio.h>

int main(void) {

int i, sum=0;

for(i=1; i<=10; i++) sum+=i;

printf("1+2+3+4+5+6+7+8+9+10=%d\n", sum);

return 0;

}

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 93

in real time and in a way that is easy for the teacher
to understand.

Regarding a future concept for TSS, the primary
goal is to build a system that achieves the types of
functions noted above. However, this level of
functionality is thought to be insufficient for the
achievement of actual implementation. In addition
to discovering students whose progress is slow, the
ideal goal of TSS would be for the system to
identify students who do not understand the course
content and notify the instructor of the need for
guidance for said students.

We are considering the inclusion of a function for
using TSS to ascertain whether or not the student
was able to complete the program on his/her own. In
reality, not all students will attempt to complete a
program on their own. There are some students who
will try to reference programs completed by others
in order to complete their own program.
Furthermore, there may be students who completely
copy the programs of another student and pass it off
as their own completed program. For example, if we
can include a function in TSS that is able to confirm
student program while comparing the progress of
students sitting next to each other, it would be
possible to ascertain whether students have
completed a program based on their own ability or
through the assistance of a friend sitting next to
them. By discovering such students with insufficient
understanding and providing instruction, it may be
possible to improve learning efficacy during class.
As shown in Figure 3, we hope to improve efficacy
of the instruction process whereby during actual use
of the system the instructor is equipped with a tablet
that displays TSS analysis results in real time,
thereby allowing the instructor to seek out and move
to students in need of assistance.

Fig. 3 Example of the system for instructor

Acknowledgements: This work was supported by
JSPS KAKENHI Grant Number 24500279.

References:
[1] Computer Wing Co.,LTD, Wingnet, Support

for education system, http://cw.co.jp/ .
[2] T. Kohonen, Self Organizing Maps, Springer,

ISBN 3-540-67921-9, 2001.
[3] H. Dozono, An Algorithm of SOM using

Simulated Annealing in the Batch Update
Phase for Sequence Analysis, Proceedings of
5th Workshop on Self Organizing Maps, 2005,
pp.171-178.

[4] L. Huang, Consumer’s Purchasing Behavior
Analysis Based on the Self-Organizing Feature
Map Neural Network Algorithm in E-Supply
Chain, Neural Information Processing, Lecture
Notes in Computer Science Volume 4232,
2006, pp.1022-1029.

[5] H. Dozono, M. Nakakuni, An Integration
Method of Multi-Modal Biometrics Using
Supervised Pareto Learning Self Organizing
Maps, Proceedings of 2008 International joint
Conference on Neural Networks, IEEE Press,
2008, pp.603-607.

[6] H. Dozono, An Algorithm of SOM using
Simulated Annealing in the Batch Update
Phase for Sequence Analysis, Proceedings of
5th Workshop on Self Organizing Maps, 2005,
pp.171-178.

[7] H. Dozono, M. Nakakuni, The Supporting
System for Teaching C Language Based On
Self Organizing Maps, Proceedings of 14th
International Symposium on Advanced
Intelligent Systems, 2013, CD-ROM.

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 94

Appendix

Fig. A The student PC management screen in the Wingnet system

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 95

Fig. B Mapping of students’ progress

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 96

